Dr. Marques Sophie Office 519 Linear algebra

Fall Semester 2013 marques@cims.nyu.edu

Problem Set #3

Due Tuesday 25 february in Class

Exercise 1 (\star) Let V be a vector space and $W \subset V$ a subspace. Show that the relation

 $v \sim v' \Leftrightarrow v - v' \in W$

defines an equivalence relation on V.

In the following two exercises, let $T: V \to W$ be a **linear map** between the vector spaces V and W that is: for any $v_1, v_2 \in V$ and $\lambda \in K$

- (a) $T(\lambda \cdot v_1) = \lambda \cdot T(v_1);$
- (b) $T(v_1 + v_2) = T(v_1) + T(v_2)$

We denote 0_V (resp. 0_W) stands for the zero element of V (resp. W). Define the kernel of T to be the set

 $ker(T) := \{ v \in V : T(v) = 0_W \}$

and the range of T to be the set

$$Im(T) := \{T(v) : v \in V\}$$

Exercise 2 (\star) :

- 1. Prove that
 - $T(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i T(v_i)$, for any $\lambda_i \in K$ and $v_i \in V$.
 - $T(0_V) = 0_W$.
 - T(-v) = -T(v), for any $v \in V$;
- 2. Let $T_1: V \to W$ and $T_2: V \to W$ be linear maps and S be a spanning set of S. Suppose that $T_1(s) = T_2(s)$, for any $s \in S$. Prove that $T_1 = T_2$ (i.e. $T_1(v) = T_2(v)$, for any $v \in V$).
- 3. Let $\dim_K(V) < \infty$, $\{v_1, ..., v_n\}$ a bases for V. Select any n vectors $w_1, ..., w_n$ in W, prove that there is a unique linear map $T: V \to W$ such that $T(v_i) = w_i$, for any $1 \le i \le n$. (Be careful: Prove existence and unicity.)

4. Suppose that the linear map T is a bijection. Prove that its inverse T^{-1} is also a linear map. (Hint: $T \circ T^{-1} = Id_W$ and $T^{-1} \circ T = Id_V$. Recall that for any $w \in W, T^{-1}(w) =$ unique vector $v \in V$ such that T(v) = w.)

5. Prove also that if
$$T$$
 is

$$\begin{cases}
1) \text{ injective} \\
2) \text{ surjective} \\
3) \text{ bijective}
\end{cases}$$
then T sends

$$\begin{cases}
1) \text{ independent sets} \\
2) \text{ spanning sets} \\
1) \text{ independent sets} \\
2) \text{ spanning sets} \\
3) \text{ bases}
\end{cases}$$

Exercise 3 (\star) :

- 1. Prove that ker(T) is a subspace of V and Im(T) is a subspaces of W.
- 2. Prove that T is injective if and only if $Ker(T) = \{0\}$.
- 3. If $\dim_K(V) < \infty$, Prove that $\dim_K(Ker(T)) < \infty$, $\dim_K(Im(T)) < \infty$ and that

$$dim_K(Ker(T)) + dim_K(Im(T)) = dim_K(V)$$

(Hint : Get inspire by the proof of the course for $\dim_K(V/W) = \dim_K(V) + \dim_K(W)$).

- 4. Suppose that $dim_K(V) = dim_K(W) < \infty$. Deduce from previous question that T is injective if and only if T is surjective if and only if T is bijective.
- 5. (** Bonus) For W a subspace of a vector space V, we have seen in class that the quotient map $\pi: V \to V/W$ is a linear map. Prove that:
 - $ker(\pi) = W$
 - $\pi: V \to V/W$ has the following universal property: given a vector space X and a linear map $T: V \to X$ such that $W \subset ker(T)$, there exists a unique linear map $\overline{T}: V/W \to X$ such that $\overline{T} \circ \pi = T$. (Hint: Notice that the last equality define already the map \overline{T} , be careful of making sure this map is well define, that is it does not depends on the choices of the representative and that it is unique).

(Note: It is common to say that \overline{T} makes the diagram

$$V \xrightarrow{T} X$$

$$\pi \bigvee_{\bar{T}} X$$

$$V/W$$

commutes meaning that $\overline{T} \circ \pi = T$.)

1

 $^{^{1}(\}star) = \text{easy} , (\star\star) = \text{medium}, (\star\star\star) = \text{challenge}$